If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+9k+2.25=0
a = 1; b = 9; c = +2.25;
Δ = b2-4ac
Δ = 92-4·1·2.25
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-6\sqrt{2}}{2*1}=\frac{-9-6\sqrt{2}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+6\sqrt{2}}{2*1}=\frac{-9+6\sqrt{2}}{2} $
| 9y+81=63 | | 3x-4=2x-(-x+4) | | -8u=-9u-7 | | 7(6+2b)=-9-3b | | -10(q+5)=-20 | | -8(x-2)=4(-6x-4) | | 3(2x+6)=6(9) | | 8x+8=5-10 | | 4x-12+5x=41 | | 71=16x+17 | | 10+7z=6z | | 0.2x=1/25 | | x+9/9=3/x-8 | | (6x+9)=(4x-19)=180 | | 9+12x+15-3x=13 | | 2s-7=9+4s | | 0.80x-0.60(80+x)=-0.45(80) | | 2(x+6)=58 | | 3c-6+2c=10c+2c+6 | | 8v=9v-4 | | 3y-9=-81 | | -3(1-4x)=-23+8x | | F(x)=19x+13 | | 5r-4=4r | | |4x-1|=19 | | 4(3x+2)+3(3x-2)=3x+38 | | -9c=54-3c | | 2(4x+5)+8=50 | | -8d=-7d+2 | | 44+.6x=35+.9x | | J=-8-j | | 10m=6+9m |